
Mission 7:
Personal Billboard

Student Workbook

Let’s go to the next level

Now that your programs can keep going with a
loop, and you can control input with the
buttons, it is time to handle more data.

Have you seen wearable devices – things like
hats, belts or shirts that display a message or
image? You can create one with CodeX!

Go to the Mission 7 Log and fill out the
Pre-Mission preparation.

● If you could show what you like or your
mood by displaying something, what would you display?
(example: a color, an image, a slogan, etc.)

● What type of clothing would you display your message on?

Page 1

Mission 7: Personal Billboard

In this project you'll use the CodeX
display and buttons to make a
billboard that shows others how
you're feeling, a fun picture, or a
short message.

On battery power, you could
make the CodeX into a
wearable electronic badge or a portable sign for a wall or
desk!

Mission 7: Get started
● Go to https://sim.firialabs.com/ and log in.

● Go to Mission 7

● Click and start Mission 7.

Page 2

https://sim.firialabs.com/

Objective #1: Image selector

The CodeX has several built-in images. You have used them
since Mission 2. You learned about using buttons for input in
Mission 6.

● Start this project by writing code that will:
○ Display the HAPPY face when BTN_L is pressed
○ Display the SAD face when BTN_R is pressed

DO THIS:
● Start a new file named Billboard
● Import codex
● Use awhile True: loop
● Show pics.HAPPY if BTN_L was pressed
● Show pics.SAD if BTN_R was pressed

○ Use CodeTrek if you need help

Page 3

Objective #2: Select more images
You will use the CodeX to display your mood, so you need
more than two pictures!

● You will still use the LEFT and RIGHT buttons to scroll
through the pictures

● So you need some way to keep track of which picture to
display

● You will use the variable choice to keep track of which
image to display, and update choicewith the buttons

You can use a number to keep
track of the images like this:

A number like this is called an
index. It is like using your
finger to point to the image!

Page 4

Objective #2: Select more images
To compare a number to a specific

value, use ==

● choice == 1

Use this comparison in an if
statement to display an image

● Use an if statement for each
picture

● You will have 4 additional
if statements

● Use HAPPY, SAD, and two
more pictures

Built-in images you can use:

Page 5

Objective #2: Select more images

DO THIS:
● Go to your Mission Log and answer the

questions about index and comparison
operators

● Define the variable choice and assign it the
value 0

● Write an if statement to display HAPPY
(if choice == 0:)

● Write an if statement to display SAD
(if choice == 1:)

● Write an if statement to display another pic
(if choice == 2:)

● Write an if statement to display another pic
(if choice == 3:)

● Change the if buttons.was_pressed(BTN_R)
code to increment choice (choice = choice + 1)

Try to do the code on your own, and then check your work
with the next page.

Page 6

Objective #2: Select more images

Page 7

Objective #3: Scroll both directions
In Mission 6, you learned about increment and decrement

● Increment:
○ Increase the value of a variable by a set amount
○ Example: num = num + 1

● Decrement:
○ Decrease the value of a variable by a set amount
○ Example: num = num - 1

You will change the code for BTN_L to decrement choice so
you can scroll the opposite way.

Another awesome feature of the debugger is that you can
watch your variables and track their values while the code is
running.
● Start the debugger

● Open the console panel

● Watch the variables as you step through the code

Page 8

Objective #3: Scroll both directions

DO THIS:
● Go to your Mission Log and review

“increment” and “decrement” from Mission 6
● Change the code for BTN_L to decrement

choice by 1
● Start the debugger
● Open the console panel
● Use the Step In button to run the code.

○ Click several times, and then press
BTN_R. Check the value
of choice.

○ Click several more times, and then press
either BTN_R or
BTN_L. Check the value of choice.

○ Continue as long as you want, until you
understand the code.

○ Then STOP the code.

Mission Quiz: Billboard checkpoint
Test your skills by taking the quiz.

Page 9

Objective #4: Wrap around

You probably noticed that if you keep pressing BTN_R, it stops
at the last image.

● The value of choice keeps increasing, but the image stays
the same.

● Also, pressing BTN_L many times keeps the first image on
the screen.

● The value of choice decreases, but the image stays the
same.

● There are no if statements for choice == 4 or choice == -1
● So the last image displayed remains on the screen

Can you improve the program and avoid this problem?

Page 10

Objective #4: Wrap around

Instead of adding more images or if statements, make the
value of choicewrap-around
to the first value.

● Use an if statement to
know when to wrap
around.

● Use a comparison
operator.

You can have an if statement
inside an if statement -- just be careful with the indenting

The second if statement causes the value of choice to
wrap-around, and start over.

● The last index is 3
● The first index is 0

What will the if statement look like to wrap-around BTN_L?

● The value of choice will need to be the LAST index if less
than 0.

Page 11

Objective #4: Wrap around

DO THIS:
● Go to your Mission Log and write down what
you think the code should look like to
wrap-around the value of choice in
BTN_LIndent the heartbeat code

Modify your code

● Add an if statement to BTN_R so the value of
choice wraps around

● Add an if statement to
BTN_L so the value of
choice wraps around

● Test your code
● Then stop the code

Page 12

Objective #5: Image list
Four pictures is nice, but what if you want to add more?

That is a lot of typing!

● Every new image needs an if statement
● Your code can get very

long very quickly!

Instead, you can make a list!

DO THIS:
● Click on in the instructions panel
● Go to your Mission Log and answer the
questions about list

Page 13

Objective #5: Image list

● A list is a type!
● Now you know six data

types:
○ Integer
○ CodeX image
○ String
○ Boolean
○ Float
○ List

A note about a list and the index of each item

● The order of the items in
the list is important

● Each item has an index
(number) assigned

● The first index is always 0
● The last index is always 1

less than the number of
items

Page 14

Objective #5: Image list
Things you can do with a list:

● Create a list (use [])

my_list = [pics.HAPPY, pics.SAD, pics.SURPRISED, pics.ASLEEP, pics.TIARA]

● Access an item in the list (use [])

my_image = my_list[1]
my_image = pics.SAD

my_image = my_list[choice]
my_image = whatever image

is at the current
value of choice

Page 15

Objective #5: Image list

DO THIS:
● Add a list to your code
○ Use the same four images

● Change the code to access the list
○ Add two lines of code to access the list using

choice for the index
○ Delete the four if statements that displayed

the images

Leave the if statements for BTN_L and BTN_R

Page 16

Objective #6: No magic numbers

● With four images in your list, the index numbers are
○ 0, 1, 2, 3

● You use these numbers for wrap-around

● If you added another image, the last index would be 4,
not 3.

● You would have to change 3 to 4 everywhere in the code!
● These literals are called “magic numbers”

● Magic numbers make the code harder to maintain, and
harder to read and understand.

● The magic number in this program is the last index of the
list

● So …
● Use a built-in function!

This code will give the length of the list, which is the number
of items in the list.

● Remember: the last index is always one less than the
number of items

Page 17

Objective #6: No magic numbers
Now you can add more images

DO THIS:
● Add another image to your list

○ A list of images is on slide 9
● Create a variable for LAST_INDEX

● Use the LAST_INDEX variable in the code:

Mission Quiz: List len
Test your skills by taking the quiz.

Page 18

Objective #7: Text time!
Images are expressive … but text can say so much more!

● You can use a string variable to create a message or
slogan

● Remember: a string data type uses quotation marks: “..”
○ my_message = “Meh”
○ my_message = “Having a great day”

● You also include a string message in your list
○ display.show(my_message) will display the text

string

DO THIS:
● Add a text
string to your list
● OPTIONAL:
Your list can look
like this to make it
easier to read.

Page 19

Objective #8: Green with envy

What if you're neither HAPPY nor SAD? ...and text just isn't
describing you?

● Sometimes you just need a color.
● Maybe you are GREEN with envy!
● Wouldn't it be cool to fill the display with a color?
● Try it out!

DO THIS:
● Add GREEN to the list
● Run the program
● Get an error?
● Find out why in the next objective

Page 20

Objective #9: Fill ‘er up

GREEN isn’t an image or a string. What type is it?

● Colors in the codex library are actually tuples!
● A tuple is like a list that can't be changed.
● CodeX color tuples have three integer values:

(red, green, blue)
● You learned about RGB values in Mission 3
● What do you think the tuple for GREEN is?

DO THIS:
● Go to the Mission Log and write your

guess for the RGB tuple of GREEN

Page 21

Objective #9: Fill ‘er up

display.show() doesn’t work with colors, but display.fill()
does!

● You just have to know when to use display.show() and
when to use display.fill()

● You need to check for the type
● You can use the console panel to help you

DO THIS:
● Open the console panel. You can type

commands directly into the console.

● Check the type of several values:
○ type(7) -> ‘int’
○ type(1.15)
○ type(True)
○ type([1, 2, 3])

● The type is shown like this:
● Now get the type of a color

○ type((0, 255, 0))

Page 22

Objective #9: Fill ‘er up

● The type of a color is ‘tuple’
● You can use this information in
your code

● If the type is ‘tuple’,
use display.fill().
Else
use display.show()

DO THIS:
● Add an if statement to the code that

compares the current my_image to a tuple.
● If it is, use display.fill().
● Else use display.show()
● Run the code. You should get colors, text

and images!

Page 23

Objective #9: Fill ‘er up

DO THIS:
● Add more colors, text or images to your list.
● Run the code.
● No matter how many items you have, the

code should work without making any other
changes.

● Pretty cool, Right!
● Now you can display your mood by stopping

on the color, text, or image that represents
you.

Page 24

Mission Complete

You have completed the seventh mission.

Do this:

● Read your “Completed Mission” message
● Complete your Mission 7 Log

○ Post-Mission Reflection
● Get ready for your next mission!

Wait! Before you go … Clear the CodeX
Go to FILE -- BROWSE FILES

Select the “Clear” file and open it

Run the program to clear the CodeX

Okay. Now you can go.

Page 25

